Quantitative Research Review: 3-1

e The Scientific Method

e Null Hypotheses, Alternative Hypotheses

e Defining a rejection region based on hypothesis
o T-tests

e Degrees of Freedom

e Errortypes
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Power
significance level ("p-value”) = P(type | error) = P(Reject H | H )
(probability we are incorrect)

power =1 - P(type Il error) = P(Reject H, | H,)
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Power
significance level ("p-value”) = P(type | error) = P(Reject H | H )
(probability we are incorrect)

power =1 - P(type Il error) = P(Reject H, | H,)
(probability we are correct)

Formally, a power function of a test with rejection region, R, is:
B(6) = Py(X € R)

where 0 is the parameters of the distribution over which R is defined.

(e.g. p, n for a binomial distribution)



Multi-test Correction

If alpha = .05, and | run 40
variables through significance
tests, then, by chance, how many
are likely to be significant?
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2 (5% any test rejects the null, by chance)
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Multi-test Correction

What if all tests are independent?

=> “Bonferroni Correction” (a/m)




Multi-test Correction

What if all tests are independent?

=> “Bonferroni Correction” (a/m)

But this may over-correct.



Multi-test Correction

Benjamini-Hochberg Correction Procedure

1. Let P(l )< < P[m) denote ordered p-values

2. Define: i

(i=——,and R = max {.f'  Pa) < f'}

-

' FTE

, ]
where C_ =1 if p-values are independent, Cm = z T otherwise
3. LetT= P(R], the “rejection threshold” i=1
4. Rejectall H ) for which P, <T

(Weiss, 2005)
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The Scientific Method
Potential Effect from Big Data

Refine, Alter,
Expand or Reject
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It my hypothesis is comect,
then | expect a, b, c, ...



Hypothesis Testing

Terminology: “tails” -- is the rejection region made up of one or two sides of the
rejection region?

Example: Comparing two means:

e two-tailed p-value: P(T > [t or T < -|t|) = 2*P(T > |t|)?
(when there is no assumption of direction of difference)
e one-tailed p-value: P(T >1)? (when H_ posits the second mean is greater)
P(T <t)? (when H_ posits the second mean is less)



Resampling Techniques

“nonparametric” tests

The permutation test:

t .. = Compute observed score
e passes=0
e for1toB:

o randomly permute the data, keeping the same sizes per class
o t, = compute score on permuted data
o ift,>(or<)t . passes+=1

e p value = passes/B

Application: comparing two distributions, especially when they are unknown.



Linear Regression

Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor’ = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

A =)

Regression: riz)=E¥Y

goal: estimate the function r



Linear Regression

Finding a linear function based on X to best yield Y.
X = “covariate” = “feature” = “predictor” = “regressor’ = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

A =)

Regression: rizl=EY
goal: estimate the function r
Linear Regression (univariate version): r(x) = 3, + @

goal: find 8, §, such that r(z) &~ E(Y|X = x)




Linear Regression

Simple Linear Regression Y, = 5y + E_‘f 1.X; + €
where E(¢;|X;) = 0 and V(| X;) = o

riz) = by + iz



Linear Regression

— eITor

Simple Linear Regression Y, =580+ 51X, + e—

where E(e;|.X; =W{T“!I;J o

expected variance

/

intercept slope



